HOME> 国足世界杯夺冠> 人工智能初探3:围棋ai篇1(含代码)

人工智能初探3:围棋ai篇1(含代码)

1.发展历程

围棋AI的发展史可以追溯到20世纪60年代,当时最早的围棋AI研究集中在日本。下棋的计算机程序开始出现,但它们的水平很低,无法与人类棋手竞争。

在20世纪70年代和80年代,围棋AI的研究取得了一些进展。首先,研究人员开始使用更复杂的搜索算法,如Alpha-Beta剪枝,以改进计算机程序的下棋水平。然而,由于围棋的复杂性和搜索空间的巨大,围棋AI仍然无法与顶级人类棋手匹敌。

进入21世纪后,围棋AI的发展迎来了重大突破。2006年,IBM的Deep Blue在国际象棋领域击败了世界冠军卡斯帕罗夫,这也启发了研究人员使用深度学习技术来提升围棋AI的水平。

2016年,Google的AlphaGo在与世界冠军李世石的五番棋比赛中4比1取胜,这是围棋AI历史上的一次重大突破。AlphaGo使用了深度神经网络和蒙特卡洛树搜索算法,大大提高了其下棋水平。

之后,围棋AI的发展迅速。2017年,AlphaGo Zero在不使用人类棋谱的情况下,仅通过自我博弈训练,就达到了超越AlphaGo的水平。2018年,DeepMind推出了AlphaZero,它能够自我学习和超越多种棋类游戏,包括围棋、国际象棋和日本将棋。

围棋AI的发展不仅在围棋领域取得了巨大成功,还对其他领域的人工智能研究产生了深远影响。围棋AI的成功证明了深度学习和强化学习等技术的潜力,也加速了人工智能的发展和应用。

2.实现思路

1.围棋棋盘表示

class GoBoard:

def __init__(self, size=19):

self.size = size

self.board = [[0] * size for _ in range(size)] # 0: empty, 1: black, 2: white

def place_stone(self, x, y, player):

if self.board[x][y] == 0:

self.board[x][y] = player

return True

return False

def get_legal_moves(self):

moves = []

for i in range(self.size):

for j in range(self.size):

if self.board[i][j] == 0:

moves.append((i, j))

return moves

def is_game_over(self):

# 这里可以添加判断游戏结束的逻辑

return False

2.蒙特卡洛树搜索MCTS

MCTS是一种用于决策的算法,特别适合围棋这种复杂的游戏。MCTS通过模拟大量的随机对局来评估每个可能的走法。

import random

class Node:

def __init__(self, parent=None, move=None, board=None):

self.parent = parent

self.move = move

self.board = board

self.children = []

self.wins = 0

self.visits = 0

self.untried_moves = board.get_legal_moves()

def select_child(self):

# 使用UCT算法选择子节点

s = sorted(self.children, key=lambda c: c.wins / c.visits + sqrt(2 * log(self.visits) / c.visits))[-1]

return s

def expand(self):

move = self.untried_moves.pop()

new_board = self.board.copy()

new_board.place_stone(*move, self.board.current_player)

child_node = Node(parent=self, move=move, board=new_board)

self.children.append(child_node)

return child_node

def update(self, result):

self.visits += 1

self.wins += result

def simulate(self):

# 随机模拟对局

current_board = self.board.copy()

while not current_board.is_game_over():

moves = current_board.get_legal_moves()

if not moves:

break

move = random.choice(moves)

current_board.place_stone(*move, current_board.current_player)

return current_board.get_result()

def copy(self):

new_board = GoBoard(self.size)

new_board.board = [row[:] for row in self.board]

return new_board

def get_result(self):

# 这里可以添加计算胜负的逻辑

return 0

3.MCTS主循环(包括选择、扩展、模拟和反向传播)

from math import sqrt, log

def mcts(root, iterations):

for _ in range(iterations):

node = root

# 选择

while node.untried_moves == [] and node.children != []:

node = node.select_child()

# 扩展

if node.untried_moves != []:

node = node.expand()

# 模拟

result = node.simulate()

# 反向传播

while node is not None:

node.update(result)

node = node.parent

return sorted(root.children, key=lambda c: c.visits)[-1].move

4.主程序

def main():

board = GoBoard()

current_player = 1 # 1: black, 2: white

while not board.is_game_over():

if current_player == 1:

# AI的回合

root = Node(board=board)

move = mcts(root, 1000) # 1000次模拟

board.place_stone(*move, current_player)

else:

# 玩家的回合

x, y = map(int, input("Enter your move (x y): ").split())

board.place_stone(x, y, current_player)

current_player = 3 - current_player # 切换玩家

print("Game over")

if __name__ == "__main__":

main()

3.解释

棋盘表示:GoBoard类表示围棋棋盘,提供了放置棋子、获取合法走法、判断游戏是否结束等功能。MCTS节点:Node类表示MCTS树中的一个节点,包含了父节点、走法、棋盘状态、子节点、胜利次数、访问次数等信息。MCTS算法:mcts函数实现了MCTS的主循环,包括选择、扩展、模拟和反向传播四个步骤。主程序:main函数实现了简单的围棋对局,AI使用MCTS算法进行决策,玩家通过输入坐标来下棋。

4.优化思路

神经网络模型设计

升级步骤概览

定义神经网络模型:输入棋盘状态,输出策略(走法概率)和值(胜率评估)。修改MCTS:用神经网络指导搜索过程(替代随机模拟)。训练神经网络:通过自我对弈生成数据,进行监督学习和强化学习。整合完整系统:将神经网络与MCTS结合。

1. 神经网络模型设计(使用PyTorch)

import torch

import torch.nn as nn

import torch.nn.functional as F

class GoNet(nn.Module):

def __init__(self, input_channels=5, board_size=19):

super(GoNet, self).__init__()

# 输入通道:当前玩家棋子、对手棋子、气、历史状态等(这里简化为3通道)

self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=3, padding=1)

self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)

self.conv3 = nn.Conv2d(64, 64, kernel_size=3, padding=1)

# 策略头(预测走法概率)

self.policy_conv = nn.Conv2d(64, 2, kernel_size=1)

self.policy_fc = nn.Linear(2 * board_size**2, board_size**2)

# 价值头(预测胜率)

self.value_conv = nn.Conv2d(64, 1, kernel_size=1)

self.value_fc1 = nn.Linear(board_size**2, 64)

self.value_fc2 = nn.Linear(64, 1)

def forward(self, x):

# 输入x形状: [batch, channels, height, width]

x = F.relu(self.conv1(x))

x = F.relu(self.conv2(x))

x = F.relu(self.conv3(x))

# 策略输出

p = F.relu(self.policy_conv(x))

p = p.view(p.size(0), -1) # 展平

p = self.policy_fc(p)

p = F.softmax(p, dim=1) # 走法概率分布

# 价值输出

v = F.relu(self.value_conv(x))

v = v.view(v.size(0), -1)

v = F.relu(self.value_fc1(v))

v = torch.tanh(self.value_fc2(v)) # 范围[-1, 1],表示当前玩家胜率

return p, v

2. 修改MCTS节点(神经网络指导搜索)

class NeuralNode(Node):

def __init__(self, parent=None, move=None, board=None, net=None):

super().__init__(parent, move, board)

self.net = net # 神经网络模型

self.policy = None # 策略概率

self.value = None # 价值评估

def expand(self):

# 使用神经网络预测策略概率

if self.policy is None:

board_tensor = self._board_to_tensor()

with torch.no_grad():

policy_probs, value = self.net(board_tensor)

self.policy = policy_probs.cpu().numpy().flatten()

self.value = value.item()

# 按策略概率选择未尝试的走法

legal_moves = self.untried_moves

move_probs = [self.policy[move[0]*self.board.size + move[1]] for move in legal_moves]

total = sum(move_probs)

if total == 0: # 防止除零

move_probs = [1/len(legal_moves)] * len(legal_moves)

else:

move_probs = [p/total for p in move_probs]

# 选择概率最高的走法扩展

idx = np.argmax(move_probs)

move = legal_moves.pop(idx)

new_board = self.board.copy()

new_board.place_stone(*move, self.board.current_player)

child = NeuralNode(parent=self, move=move, board=new_board, net=self.net)

self.children.append(child)

return child

def _board_to_tensor(self):

# 将棋盘转换为神经网络的输入张量

# 这里简化为3通道:当前玩家、对手、空点

board_tensor = np.zeros((3, self.board.size, self.board.size))

for i in range(self.board.size):

for j in range(self.board.size):

if self.board.board[i][j] == self.board.current_player:

board_tensor[0][i][j] = 1

elif self.board.board[i][j] != 0:

board_tensor[1][i][j] = 1

else:

board_tensor[2][i][j] = 1

return torch.FloatTensor(board_tensor).unsqueeze(0) # 添加batch维度

3. 修改MCTS主循环

def neural_mcts(root, iterations, c_puct=1.0):

for _ in range(iterations):

node = root

# 选择阶段(使用PUCT算法)

while node.children:

# PUCT公式:argmax(Q + U)

puct_scores = [

(child.wins / child.visits) + c_puct * child.policy * sqrt(node.visits) / (child.visits + 1)

for child in node.children

]

node = node.children[np.argmax(puct_scores)]

# 扩展和评估

if not node.board.is_game_over():

node.expand()

# 反向传播价值评估(而非模拟结果)

value = node.value if node.value is not None else 0

while node is not None:

node.visits += 1

node.wins += value

node = node.parent

return max(root.children, key=lambda c: c.visits).move

4. 训练神经网络

监督学习(使用人类棋谱)

def train_supervised(net, dataset, epochs=10):

optimizer = torch.optim.Adam(net.parameters(), lr=0.001)

for epoch in range(epochs):

for board_state, policy_target, value_target in dataset:

optimizer.zero_grad()

policy_pred, value_pred = net(board_state)

loss_policy = F.cross_entropy(policy_pred, policy_target)

loss_value = F.mse_loss(value_pred, value_target)

total_loss = loss_policy + loss_value

total_loss.backward()

optimizer.step()

强化学习(自我对弈)

def self_play(net, num_games=100):

for _ in range(num_games):

board = GoBoard()

memory = []

while not board.is_game_over():

root = NeuralNode(board=board, net=net)

move = neural_mcts(root, iterations=200)

board.place_stone(*move, board.current_player)

# 保存训练数据(状态、MCTS策略、胜负结果)

memory.append((root._board_to_tensor(), root.policy, 0))

# 根据最终胜负更新value标签

result = board.get_result()

for data in memory:

data[2] = result

train_supervised(net, memory)

5. 完整系统整合

def main():

# 初始化神经网络

net = GoNet()

# 加载预训练权重(如果有)

# net.load_state_dict(torch.load("go_net.pth"))

# 自我对弈训练

self_play(net, num_games=1000)

# 与AI对弈

board = GoBoard()

while not board.is_game_over():

root = NeuralNode(board=board, net=net)

move = neural_mcts(root, iterations=200)

board.place_stone(*move, board.current_player)

print(f"AI placed at {move}")

# 玩家输入...